RubiSCoT: A Framework for AI-Supported Academic Assessment (2510.17309v1)
Abstract: The evaluation of academic theses is a cornerstone of higher education, ensuring rigor and integrity. Traditional methods, though effective, are time-consuming and subject to evaluator variability. This paper presents RubiSCoT, an AI-supported framework designed to enhance thesis evaluation from proposal to final submission. Using advanced natural language processing techniques, including LLMs, retrieval-augmented generation, and structured chain-of-thought prompting, RubiSCoT offers a consistent, scalable solution. The framework includes preliminary assessments, multidimensional assessments, content extraction, rubric-based scoring, and detailed reporting. We present the design and implementation of RubiSCoT, discussing its potential to optimize academic assessment processes through consistent, scalable, and transparent evaluation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.