Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multimodal Safety Is Asymmetric: Cross-Modal Exploits Unlock Black-Box MLLMs Jailbreaks (2510.17277v1)

Published 20 Oct 2025 in cs.CR

Abstract: Multimodal LLMs (MLLMs) have demonstrated significant utility across diverse real-world applications. But MLLMs remain vulnerable to jailbreaks, where adversarial inputs can collapse their safety constraints and trigger unethical responses. In this work, we investigate jailbreaks in the text-vision multimodal setting and pioneer the observation that visual alignment imposes uneven safety constraints across modalities in MLLMs, thereby giving rise to multimodal safety asymmetry. We then develop PolyJailbreak, a black-box jailbreak method grounded in reinforcement learning. Initially, we probe the model's attention dynamics and latent representation space, assessing how visual inputs reshape cross-modal information flow and diminish the model's ability to separate harmful from benign inputs, thereby exposing exploitable vulnerabilities. On this basis, we systematize them into generalizable and reusable operational rules that constitute a structured library of Atomic Strategy Primitives, which translate harmful intents into jailbreak inputs through step-wise transformations. Guided by the primitives, PolyJailbreak employs a multi-agent optimization process that automatically adapts inputs against the target models. We conduct comprehensive evaluations on a variety of open-source and closed-source MLLMs, demonstrating that PolyJailbreak outperforms state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: