ZSPAPrune: Zero-Shot Prompt-Aware Token Pruning for Vision-Language Models (2510.17197v1)
Abstract: As the capabilities of Vision-LLMs (VLMs) advance, they can process increasingly large inputs, which, unlike in LLMs, generates significant visual token redundancy and leads to prohibitive inference costs. While many methods aim to reduce these costs by pruning visual tokens, existing approaches, whether based on attention or diversity, typically neglect the guidance of the text prompt and thus fail to prioritize task relevance. In this work, we propose a novel, zero-shot method that reframes the problem by introducing a prompt-aware perspective, explicitly modeling visual token pruning as a balance between task relevance and information diversity. Our hierarchical approach first selects a core set of task-relevant visual tokens and then supplements them with diversity tokens to preserve broader context. Experiments across multiple models and benchmarks show that our method achieves performance that matches or surpasses the state-of-the-art with only minimal accuracy loss, even when pruning up to 90\% of the tokens. Furthermore, these gains are accompanied by significant reductions in GPU memory footprint and inference latency.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.