Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mamba4Net: Distilled Hybrid Mamba Large Language Models For Networking (2510.17147v1)

Published 20 Oct 2025 in cs.NI

Abstract: Transformer-based LLMs are increasingly being adopted in networking research to address domain-specific challenges. However, their quadratic time complexity and substantial model sizes often result in significant computational overhead and memory constraints, particularly in resource-constrained environments. Drawing inspiration from the efficiency and performance of the Deepseek-R1 model within the knowledge distillation paradigm, this paper introduces Mamba4Net, a novel cross-architecture distillation framework. Mamba4Net transfers networking-specific knowledge from transformer-based LLMs to student models built on the Mamba architecture, which features linear time complexity. This design substantially enhances computational efficiency compared to the quadratic complexity of transformer-based models, while the reduced model size further minimizes computational demands, improving overall performance and resource utilization. To evaluate its effectiveness, Mamba4Net was tested across three diverse networking tasks: viewport prediction, adaptive bitrate streaming, and cluster job scheduling. Compared to existing methods that do not leverage LLMs, Mamba4Net demonstrates superior task performance. Furthermore, relative to direct applications of transformer-based LLMs, it achieves significant efficiency gains, including a throughput 3.96 times higher and a storage footprint of only 5.48% of that required by previous LLM-based approaches. These results highlight Mamba4Net's potential to enable the cost-effective application of LLM-derived knowledge in networking contexts. The source code is openly available to support further research and development.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.