Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhanced Fish Freshness Classification with Incremental Handcrafted Feature Fusion

Published 20 Oct 2025 in cs.AI | (2510.17145v1)

Abstract: Accurate assessment of fish freshness remains a major challenge in the food industry, with direct consequences for product quality, market value, and consumer health. Conventional sensory evaluation is inherently subjective, inconsistent, and difficult to standardize across contexts, often limited by subtle, species-dependent spoilage cues. To address these limitations, we propose a handcrafted feature-based approach that systematically extracts and incrementally fuses complementary descriptors, including color statistics, histograms across multiple color spaces, and texture features such as Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrices (GLCM), from fish eye images. Our method captures global chromatic variations from full images and localized degradations from ROI segments, fusing each independently to evaluate their effectiveness in assessing freshness. Experiments on the Freshness of the Fish Eyes (FFE) dataset demonstrate the approach's effectiveness: in a standard train-test setting, a LightGBM classifier achieved 77.56% accuracy, a 14.35% improvement over the previous deep learning baseline of 63.21%. With augmented data, an Artificial Neural Network (ANN) reached 97.16% accuracy, surpassing the prior best of 77.3% by 19.86%. These results demonstrate that carefully engineered, handcrafted features, when strategically processed, yield a robust, interpretable, and reliable solution for automated fish freshness assessment, providing valuable insights for practical applications in food quality monitoring.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.