Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Beyond RGB: Leveraging Vision Transformers for Thermal Weapon Segmentation (2510.16913v1)

Published 19 Oct 2025 in cs.CV

Abstract: Thermal weapon segmentation is crucial for surveillance and security applications, enabling robust detection under lowlight and visually obscured conditions where RGB-based systems fail. While convolutional neural networks (CNNs) dominate thermal segmentation literature, their ability to capture long-range dependencies and fine structural details is limited. Vision Transformers (ViTs), with their global context modeling capabilities, have achieved state-of-the-art results in RGB segmentation tasks, yet their potential in thermal weapon segmentation remains underexplored. This work adapts and evaluates four transformer-based architectures SegFormer, DeepLabV3+, SegNeXt, and Swin Transformer for binary weapon segmentation on a custom thermal dataset comprising 9,711 images collected from real world surveillance videos and automatically annotated using SAM2. We employ standard augmentation strategies within the MMSegmentation framework to ensure robust model training and fair architectural comparison. Experimental results demonstrate significant improvements in segmentation performance: SegFormer-b5 achieves the highest mIoU (94.15\%) and Pixel Accuracy (97.04\%), while SegFormer-b0 provides the fastest inference speed (98.32 FPS) with competitive mIoU (90.84\%). SegNeXt-mscans offers balanced performance with 85.12 FPS and 92.24\% mIoU, and DeepLabV3+ R101-D8 reaches 92.76\% mIoU at 29.86 FPS. The transformer architectures demonstrate robust generalization capabilities for weapon detection in low-light and occluded thermal environments, with flexible accuracy-speed trade-offs suitable for diverse real-time security applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.