Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust extrapolation problem for stochastic sequences with stationary increments (2510.16900v1)

Published 19 Oct 2025 in math.ST and stat.TH

Abstract: The problem of optimal estimation of functionals $A\xi =\sum\nolimits_{k=0}{\infty }{}a(k)\xi (k)$ and ${{A}{N}}\xi =\sum\nolimits{k=0}{N}{}a(k)\xi (k)$ which depend on the unknown values of stochastic sequence $\xi (k)$ with stationary $n$th increments is considered. Estimates are based on observations of the sequence $\xi (m)$ at points of time $m=-1,-2,\ldots$. Formulas for calculating the value of the mean square error and the spectral characteristic of the optimal linear estimates of the functionals are derived in the case where spectral density of the sequence is exactly known. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristic of the optimal linear estimates of the functionals are proposed in the case where the spectral density of the sequence is not known but a set of admissible spectral densities is given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: