DeepAnalyze: Agentic Large Language Models for Autonomous Data Science (2510.16872v1)
Abstract: Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful LLMs. Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.