Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ArmFormer: Lightweight Transformer Architecture for Real-Time Multi-Class Weapon Segmentation and Classification (2510.16854v1)

Published 19 Oct 2025 in cs.CV and cs.AI

Abstract: The escalating threat of weapon-related violence necessitates automated detection systems capable of pixel-level precision for accurate threat assessment in real-time security applications. Traditional weapon detection approaches rely on object detection frameworks that provide only coarse bounding box localizations, lacking the fine-grained segmentation required for comprehensive threat analysis. Furthermore, existing semantic segmentation models either sacrifice accuracy for computational efficiency or require excessive computational resources incompatible with edge deployment scenarios. This paper presents ArmFormer, a lightweight transformer-based semantic segmentation framework that strategically integrates Convolutional Block Attention Module (CBAM) with MixVisionTransformer architecture to achieve superior accuracy while maintaining computational efficiency suitable for resource-constrained edge devices. Our approach combines CBAM-enhanced encoder backbone with attention-integrated hamburger decoder to enable multi-class weapon segmentation across five categories: handgun, rifle, knife, revolver, and human. Comprehensive experiments demonstrate that ArmFormer achieves state-of-the-art performance with 80.64% mIoU and 89.13% mFscore while maintaining real-time inference at 82.26 FPS. With only 4.886G FLOPs and 3.66M parameters, ArmFormer outperforms heavyweight models requiring up to 48x more computation, establishing it as the optimal solution for deployment on portable security cameras, surveillance drones, and embedded AI accelerators in distributed security infrastructure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.