Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ProtoMol: Enhancing Molecular Property Prediction via Prototype-Guided Multimodal Learning (2510.16824v1)

Published 19 Oct 2025 in cs.LG and q-bio.MN

Abstract: Multimodal molecular representation learning, which jointly models molecular graphs and their textual descriptions, enhances predictive accuracy and interpretability by enabling more robust and reliable predictions of drug toxicity, bioactivity, and physicochemical properties through the integration of structural and semantic information. However, existing multimodal methods suffer from two key limitations: (1) they typically perform cross-modal interaction only at the final encoder layer, thus overlooking hierarchical semantic dependencies; (2) they lack a unified prototype space for robust alignment between modalities. To address these limitations, we propose ProtoMol, a prototype-guided multimodal framework that enables fine-grained integration and consistent semantic alignment between molecular graphs and textual descriptions. ProtoMol incorporates dual-branch hierarchical encoders, utilizing Graph Neural Networks to process structured molecular graphs and Transformers to encode unstructured texts, resulting in comprehensive layer-wise representations. Then, ProtoMol introduces a layer-wise bidirectional cross-modal attention mechanism that progressively aligns semantic features across layers. Furthermore, a shared prototype space with learnable, class-specific anchors is constructed to guide both modalities toward coherent and discriminative representations. Extensive experiments on multiple benchmark datasets demonstrate that ProtoMol consistently outperforms state-of-the-art baselines across a variety of molecular property prediction tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.