Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

When AI Takes the Wheel: Security Analysis of Framework-Constrained Program Generation (2510.16823v1)

Published 19 Oct 2025 in cs.SE and cs.CR

Abstract: In recent years, the AI wave has grown rapidly in software development. Even novice developers can now design and generate complex framework-constrained software systems based on their high-level requirements with the help of LLMs. However, when LLMs gradually "take the wheel" of software development, developers may only check whether the program works. They often miss security problems hidden in how the generated programs are implemented. In this work, we investigate the security properties of framework-constrained programs generated by state-of-the-art LLMs. We focus specifically on Chrome extensions due to their complex security model involving multiple privilege boundaries and isolated components. To achieve this, we built ChromeSecBench, a dataset with 140 prompts based on known vulnerable extensions. We used these prompts to instruct nine state-of-the-art LLMs to generate complete Chrome extensions, and then analyzed them for vulnerabilities across three dimensions: scenario types, model differences, and vulnerability categories. Our results show that LLMs produced vulnerable programs at alarmingly high rates (18%-50%), particularly in Authentication & Identity and Cookie Management scenarios (up to 83% and 78% respectively). Most vulnerabilities exposed sensitive browser data like cookies, history, or bookmarks to untrusted code. Interestingly, we found that advanced reasoning models performed worse, generating more vulnerabilities than simpler models. These findings highlight a critical gap between LLMs' coding skills and their ability to write secure framework-constrained programs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube