Papers
Topics
Authors
Recent
2000 character limit reached

Domain-Contextualized Concept Graphs: A Computable Framework for Knowledge Representation (2510.16802v1)

Published 19 Oct 2025 in cs.AI

Abstract: Traditional knowledge graphs are constrained by fixed ontologies that organize concepts within rigid hierarchical structures. The root cause lies in treating domains as implicit context rather than as explicit, reasoning-level components. To overcome these limitations, we propose the Domain-Contextualized Concept Graph (CDC), a novel knowledge modeling framework that elevates domains to first-class elements of conceptual representation. CDC adopts a C-D-C triple structure - <Concept, Relation@Domain, Concept'> - where domain specifications serve as dynamic classification dimensions defined on demand. Grounded in a cognitive-linguistic isomorphic mapping principle, CDC operationalizes how humans understand concepts through contextual frames. We formalize more than twenty standardized relation predicates (structural, logical, cross-domain, and temporal) and implement CDC in Prolog for full inference capability. Case studies in education, enterprise knowledge systems, and technical documentation demonstrate that CDC enables context-aware reasoning, cross-domain analogy, and personalized knowledge modeling - capabilities unattainable under traditional ontology-based frameworks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.