Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

T3 Planner: A Self-Correcting LLM Framework for Robotic Motion Planning with Temporal Logic (2510.16767v1)

Published 19 Oct 2025 in cs.RO

Abstract: Translating natural language instructions into executable motion plans is a fundamental challenge in robotics. Traditional approaches are typically constrained by their reliance on domain-specific expertise to customize planners, and often struggle with spatio-temporal couplings that usually lead to infeasible motions or discrepancies between task planning and motion execution. Despite the proficiency of LLMs in high-level semantic reasoning, hallucination could result in infeasible motion plans. In this paper, we introduce the T3 Planner, an LLM-enabled robotic motion planning framework that self-corrects it output with formal methods. The framework decomposes spatio-temporal task constraints via three cascaded modules, each of which stimulates an LLM to generate candidate trajectory sequences and examines their feasibility via a Signal Temporal Logic (STL) verifier until one that satisfies complex spatial, temporal, and logical constraints is found.Experiments across different scenarios show that T3 Planner significantly outperforms the baselines. The required reasoning can be distilled into a lightweight Qwen3-4B model that enables efficient deployment. All supplementary materials are accessible at https://github.com/leeejia/T3_Planner.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com