Zero-Shot Performance Prediction for Probabilistic Scaling Laws (2510.16743v1)
Abstract: The prediction of learning curves for NLP models enables informed decision-making to meet specific performance objectives, while reducing computational overhead and lowering the costs associated with dataset acquisition and curation. In this work, we formulate the prediction task as a multitask learning problem, where each task's data is modelled as being organized within a two-layer hierarchy. To model the shared information and dependencies across tasks and hierarchical levels, we employ latent variable multi-output Gaussian Processes, enabling to account for task correlations and supporting zero-shot prediction of learning curves (LCs). We demonstrate that this approach facilitates the development of probabilistic scaling laws at lower costs. Applying an active learning strategy, LCs can be queried to reduce predictive uncertainty and provide predictions close to ground truth scaling laws. We validate our framework on three small-scale NLP datasets with up to $30$ LCs. These are obtained from nanoGPT models, from bilingual translation using mBART and Transformer models, and from multilingual translation using M2M100 models of varying sizes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.