Papers
Topics
Authors
Recent
2000 character limit reached

LSTM-Based Forecasting and Analysis of EV Charging Demand in a Dense Urban Campus (2510.16719v1)

Published 19 Oct 2025 in cs.LG and math.OC

Abstract: This paper presents a framework for processing EV charging load data in order to forecast future load predictions using a Recurrent Neural Network, specifically an LSTM. The framework processes a large set of raw data from multiple locations and transforms it with normalization and feature extraction to train the LSTM. The pre-processing stage corrects for missing or incomplete values by interpolating and normalizing the measurements. This information is then fed into a Long Short-Term Memory Model designed to capture the short-term fluctuations while also interpreting the long-term trends in the charging data. Experimental results demonstrate the model's ability to accurately predict charging demand across multiple time scales (daily, weekly, and monthly), providing valuable insights for infrastructure planning, energy management, and grid integration of EV charging facilities. The system's modular design allows for adaptation to different charging locations with varying usage patterns, making it applicable across diverse deployment scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.