Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Rotation, Scale, and Translation Resilient Black-box Fingerprinting for Intellectual Property Protection of EaaS Models (2510.16706v1)

Published 19 Oct 2025 in cs.CR

Abstract: Feature embedding has become a cornerstone technology for processing high-dimensional and complex data, which results in that Embedding as a Service (EaaS) models have been widely deployed in the cloud. To protect the intellectual property of EaaS models, existing methods apply digital watermarking to inject specific backdoor triggers into EaaS models by modifying training samples or network parameters. However, these methods inevitably produce detectable patterns through semantic analysis and exhibit susceptibility to geometric transformations including rotation, scaling, and translation (RST). To address this problem, we propose a fingerprinting framework for EaaS models, rather than merely refining existing watermarking techniques. Different from watermarking techniques, the proposed method establishes EaaS model ownership through geometric analysis of embedding space's topological structure, rather than relying on the modified training samples or triggers. The key innovation lies in modeling the victim and suspicious embeddings as point clouds, allowing us to perform robust spatial alignment and similarity measurement, which inherently resists RST attacks. Experimental results evaluated on visual and textual embedding tasks verify the superiority and applicability. This research reveals inherent characteristics of EaaS models and provides a promising solution for ownership verification of EaaS models under the black-box scenario.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.