Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Investigating the Impact of Rationales for LLMs on Natural Language Understanding (2510.16686v1)

Published 19 Oct 2025 in cs.CL

Abstract: Chain-of-thought (CoT) rationales, which provide step-by-step reasoning to derive final answers, benefit LLMs in both inference and training. Incorporating rationales, either by generating them before answering during inference, or by placing them before or after the original answers during training - significantly improves model performance on mathematical, symbolic and commonsense reasoning tasks. However, most work focuses on the role of rationales in these reasoning tasks, overlooking their potential impact on other important tasks like natural language understanding (NLU) tasks. In this work, we raise the question: Can rationales similarly benefit NLU tasks? To conduct a systematic exploration, we construct NLURC, a comprehensive and high-quality NLU dataset collection with rationales, and develop various rationale-augmented methods. Through exploring the applicability of these methods on NLU tasks using the dataset, we uncover several potentially surprising findings: (1) CoT inference shifts from hindering NLU performance to surpassing direct label prediction as model size grows, indicating a positive correlation. (2) Most rationale-augmented training methods perform worse than label-only training, with one specially designed method consistently achieving improvements. (3) LLMs trained with rationales achieve significant performance gains on unseen NLU tasks, rivaling models ten times their size, while delivering interpretability on par with commercial LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.