Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Infinite Neural Operators: Gaussian processes on functions (2510.16675v1)

Published 19 Oct 2025 in stat.ML and cs.LG

Abstract: A variety of infinitely wide neural architectures (e.g., dense NNs, CNNs, and transformers) induce Gaussian process (GP) priors over their outputs. These relationships provide both an accurate characterization of the prior predictive distribution and enable the use of GP machinery to improve the uncertainty quantification of deep neural networks. In this work, we extend this connection to neural operators (NOs), a class of models designed to learn mappings between function spaces. Specifically, we show conditions for when arbitrary-depth NOs with Gaussian-distributed convolution kernels converge to function-valued GPs. Based on this result, we show how to compute the covariance functions of these NO-GPs for two NO parametrizations, including the popular Fourier neural operator (FNO). With this, we compute the posteriors of these GPs in regression scenarios, including PDE solution operators. This work is an important step towards uncovering the inductive biases of current FNO architectures and opens a path to incorporate novel inductive biases for use in kernel-based operator learning methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 29 likes.

Upgrade to Pro to view all of the tweets about this paper: