Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Escaping Model Collapse via Synthetic Data Verification: Near-term Improvements and Long-term Convergence (2510.16657v1)

Published 18 Oct 2025 in stat.ML and cs.LG

Abstract: Synthetic data has been increasingly used to train frontier generative models. However, recent study raises key concerns that iteratively retraining a generative model on its self-generated synthetic data may keep deteriorating model performance, a phenomenon often coined model collapse. In this paper, we investigate ways to modify this synthetic retraining process to avoid model collapse, and even possibly help reverse the trend from collapse to improvement. Our key finding is that by injecting information through an external synthetic data verifier, whether a human or a better model, synthetic retraining will not cause model collapse. To develop principled understandings of the above insight, we situate our analysis in the foundational linear regression setting, showing that iterative retraining with verified synthetic data can yield near-term improvements but ultimately drives the parameter estimate to the verifier's "knowledge center" in the long run. Our theory hence predicts that, unless the verifier is perfectly reliable, the early gains will plateau and may even reverse. Indeed, these theoretical insights are further confirmed by our experiments on both linear regression as well as Variational Autoencoders (VAEs) trained on MNIST data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: