Count Counts: Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards (2510.16614v2)
Abstract: Reinforcement Learning (RL) has become a compelling way to strengthen the multi step reasoning ability of LLMs. However, prevalent RL paradigms still lean on sparse outcome-based rewards and limited exploration, which often drives LLMs toward repetitive and suboptimal reasoning patterns. In this paper, we study the central question of how to design exploration for LLM reasoning and introduce MERCI (Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards), a novel RL algorithm that augments policy optimization with a principled intrinsic reward. Building on the idea of count-based exploration, MERCI leverages a lightweight Coin Flipping Network (CFN) to estimate the pseudo count and further epistemic uncertainty over reasoning trajectories, and converts them into an intrinsic reward that values novelty while preserving the learning signal from task rewards. We integrate MERCI into some advanced RL frameworks like Group Relative Policy Optimization (GRPO). Experiments on complex reasoning benchmarks demonstrate that MERCI encourages richer and more varied chains of thought, significantly improves performance over strong baselines, and helps the policy escape local routines to discover better solutions. It indicates that our targeted intrinsic motivation can make exploration reliable for LLM reasoning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.