Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prior Makes It Possible: From Sublinear Graph Algorithms to LLM Test-Time Methods (2510.16609v1)

Published 18 Oct 2025 in cs.LG, cs.AI, cs.CC, and cs.DS

Abstract: Test-time augmentation, such as Retrieval-Augmented Generation (RAG) or tool use, critically depends on an interplay between a model's parametric knowledge and externally retrieved information. However, the theoretical underpinnings of this relationship remain poorly understood. Specifically, it is not clear how much pre-training knowledge is required to answer queries with a small number of augmentation steps, which is a desirable property in practice. To address this question, we formulate multi-step reasoning as an $s$-$t$ connectivity problem on a knowledge graph. We represent a model's pre-training parametric knowledge as a partial, potentially noisy subgraph. We view augmentation as querying an oracle for true edges that augment the model's knowledge. Then, we characterize the necessary and sufficient number of augmentation steps for the model to generate an accurate answer given partial prior knowledge. One key result shows a phase transition: if the prior knowledge graph over $n$ vertices is disconnected into small components, then finding a path via augmentation is inefficient and requires $\Omega(\sqrt{n})$ queries. On the other hand, once the density of correct knowledge surpasses a threshold, forming a giant component, we can find paths with an expected constant number of queries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: