Papers
Topics
Authors
Recent
Search
2000 character limit reached

Atom-anchored LLMs speak Chemistry: A Retrosynthesis Demonstration

Published 18 Oct 2025 in cs.LG, cs.AI, and q-bio.BM | (2510.16590v1)

Abstract: Applications of machine learning in chemistry are often limited by the scarcity and expense of labeled data, restricting traditional supervised methods. In this work, we introduce a framework for molecular reasoning using general-purpose LLMs that operates without requiring labeled training data. Our method anchors chain-of-thought reasoning to the molecular structure by using unique atomic identifiers. First, the LLM performs a one-shot task to identify relevant fragments and their associated chemical labels or transformation classes. In an optional second step, this position-aware information is used in a few-shot task with provided class examples to predict the chemical transformation. We apply our framework to single-step retrosynthesis, a task where LLMs have previously underperformed. Across academic benchmarks and expert-validated drug discovery molecules, our work enables LLMs to achieve high success rates in identifying chemically plausible reaction sites ($\geq90\%$), named reaction classes ($\geq40\%$), and final reactants ($\geq74\%$). Beyond solving complex chemical tasks, our work also provides a method to generate theoretically grounded synthetic datasets by mapping chemical knowledge onto the molecular structure and thereby addressing data scarcity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.