Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Novel Gripper with Semi-Peaucellier Linkage and Idle-Stroke Mechanism for Linear Pinching and Self-Adaptive Grasping (2510.16517v1)

Published 18 Oct 2025 in cs.RO

Abstract: This paper introduces a novel robotic gripper, named as the SPD gripper. It features a palm and two mechanically identical and symmetrically arranged fingers, which can be driven independently or by a single motor. The fingertips of the fingers follow a linear motion trajectory, facilitating the grasping of objects of various sizes on a tabletop without the need to adjust the overall height of the gripper. Traditional industrial grippers with parallel gripping capabilities often exhibit an arcuate motion at the fingertips, requiring the entire robotic arm to adjust its height to avoid collisions with the tabletop. The SPD gripper, with its linear parallel gripping mechanism, effectively addresses this issue. Furthermore, the SPD gripper possesses adaptive capabilities, accommodating objects of different shapes and sizes. This paper presents the design philosophy, fundamental composition principles, and optimization analysis theory of the SPD gripper. Based on the design theory, a robotic gripper prototype was developed and tested. The experimental results demonstrate that the robotic gripper successfully achieves linear parallel gripping functionality and exhibits good adaptability. In the context of the ongoing development of embodied intelligence technologies, this robotic gripper can assist various robots in achieving effective grasping, laying a solid foundation for collecting data to enhance deep learning training.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.