Papers
Topics
Authors
Recent
2000 character limit reached

eDCF: Estimating Intrinsic Dimension using Local Connectivity (2510.16513v1)

Published 18 Oct 2025 in cs.LG and stat.ML

Abstract: Modern datasets often contain high-dimensional features exhibiting complex dependencies. To effectively analyze such data, dimensionality reduction methods rely on estimating the dataset's intrinsic dimension (id) as a measure of its underlying complexity. However, estimating id is challenging due to its dependence on scale: at very fine scales, noise inflates id estimates, while at coarser scales, estimates stabilize to lower, scale-invariant values. This paper introduces a novel, scalable, and parallelizable method called eDCF, which is based on Connectivity Factor (CF), a local connectivity-based metric, to robustly estimate intrinsic dimension across varying scales. Our method consistently matches leading estimators, achieving comparable values of mean absolute error (MAE) on synthetic benchmarks with noisy samples. Moreover, our approach also attains higher exact intrinsic dimension match rates, reaching up to 25.0% compared to 16.7% for MLE and 12.5% for TWO-NN, particularly excelling under medium to high noise levels and large datasets. Further, we showcase our method's ability to accurately detect fractal geometries in decision boundaries, confirming its utility for analyzing realistic, structured data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.