Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Rotated Object Detection via Anisotropic Gaussian Bounding Box and Bhattacharyya Distance (2510.16445v1)

Published 18 Oct 2025 in cs.CV

Abstract: Detecting rotated objects accurately and efficiently is a significant challenge in computer vision, particularly in applications such as aerial imagery, remote sensing, and autonomous driving. Although traditional object detection frameworks are effective for axis-aligned objects, they often underperform in scenarios involving rotated objects due to their limitations in capturing orientation variations. This paper introduces an improved loss function aimed at enhancing detection accuracy and robustness by leveraging the Gaussian bounding box representation and Bhattacharyya distance. In addition, we advocate for the use of an anisotropic Gaussian representation to address the issues associated with isotropic variance in square-like objects. Our proposed method addresses these challenges by incorporating a rotation-invariant loss function that effectively captures the geometric properties of rotated objects. We integrate this proposed loss function into state-of-the-art deep learning-based rotated object detection detectors, and extensive experiments demonstrated significant improvements in mean Average Precision metrics compared to existing methods. The results highlight the potential of our approach to establish new benchmark in rotated object detection, with implications for a wide range of applications requiring precise and reliable object localization irrespective of orientation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.