Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recover Biological Structure from Sparse-View Diffraction Images with Neural Volumetric Prior (2510.16391v1)

Published 18 Oct 2025 in physics.optics

Abstract: Volumetric reconstruction of label-free living cells from non-destructive optical microscopic images reveals cellular metabolism in native environments. However, current optical tomography techniques require hundreds of 2D images to reconstruct a 3D volume, hindering them from intravital imaging of biological samples undergoing rapid dynamics. This poses the challenge of reconstructing the entire volume of semi-transparent biological samples from sparse views due to the restricted viewing angles of microscopes and the limited number of measurements. In this work, we develop Neural Volumetric Prior (NVP) for high-fidelity volumetric reconstruction of semi-transparent biological samples from sparse-view microscopic images. NVP integrates explicit and implicit neural representations and incorporates the physical prior of diffractive optics. We validate NVP on both simulated data and experimentally captured microscopic images. Compared to previous methods, NVP significantly reduces the required number of images by nearly 50-fold and processing time by 3-fold while maintaining state-of-the-art performance. NVP is the first technique to enable volumetric reconstruction of label-free biological samples from sparse-view microscopic images, paving the way for real-time 3D imaging of dynamically changing biological samples. \href{https://xue-lab-cobi.github.io/Sparse-View-FDT/}{Project Page}

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: