Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient and Privacy-Preserving Binary Dot Product via Multi-Party Computation

Published 18 Oct 2025 in cs.CR and cs.CC | (2510.16331v1)

Abstract: Striking a balance between protecting data privacy and enabling collaborative computation is a critical challenge for distributed machine learning. While privacy-preserving techniques for federated learning have been extensively developed, methods for scenarios involving bitwise operations, such as tree-based vertical federated learning (VFL), are still underexplored. Traditional mechanisms, including Shamir's secret sharing and multi-party computation (MPC), are not optimized for bitwise operations over binary data, particularly in settings where each participant holds a different part of the binary vector. This paper addresses the limitations of existing methods by proposing a novel binary multi-party computation (BiMPC) framework. The BiMPC mechanism facilitates privacy-preserving bitwise operations, with a particular focus on dot product computations of binary vectors, ensuring the privacy of each individual bit. The core of BiMPC is a novel approach called Dot Product via Modular Addition (DoMA), which uses regular and modular additions for efficient binary dot product calculation. To ensure privacy, BiMPC uses random masking in a higher field for linear computations and a three-party oblivious transfer (triot) protocol for non-linear binary operations. The privacy guarantees of the BiMPC framework are rigorously analyzed, demonstrating its efficiency and scalability in distributed settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.