Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adversarially Robust Quantum Transfer Learning (2510.16301v1)

Published 18 Oct 2025 in quant-ph

Abstract: Quantum machine learning (QML) has emerged as a promising area of research for enhancing the performance of classical machine learning systems by leveraging quantum computational principles. However, practical deployment of QML remains limited due to current hardware constraints such as limited number of qubits and quantum noise. This chapter introduces a hybrid quantum-classical architecture that combines the advantages of quantum computing with transfer learning techniques to address high-resolution image classification. Specifically, we propose a Quantum Transfer Learning (QTL) model that integrates classical convolutional feature extraction with quantum variational circuits. Through extensive simulations on diverse datasets including Ants & Bees, CIFAR-10, and Road Sign Detection, we demonstrate that QTL achieves superior classification performance compared to both conventional and quantum models trained without transfer learning. Additionally, we also investigate the model's vulnerability to adversarial attacks and demonstrate that incorporating adversarial training significantly boosts the robustness of QTL, enhancing its potential for deployment in security sensitive applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube