Papers
Topics
Authors
Recent
2000 character limit reached

PrivacyPAD: A Reinforcement Learning Framework for Dynamic Privacy-Aware Delegation (2510.16054v1)

Published 16 Oct 2025 in cs.CR and cs.CL

Abstract: When users submit queries to LLMs, their prompts can often contain sensitive data, forcing a difficult choice: Send the query to a powerful proprietary LLM providers to achieving state-of-the-art performance and risk data exposure, or relying on smaller, local models guarantees data privacy but often results in a degradation of task performance. Prior approaches have relied on static pipelines that use LLM rewriting, which shatters linguistic coherence and indiscriminately removes privacy-sensitive information, including task-critical content. We reformulate this challenge (Privacy-Conscious Delegation) as a sequential decision-making problem and introduce a novel reinforcement learning (RL) framework called PrivacyPAD to solve it. Our framework trains an agent to dynamically route text chunks, learning a policy that optimally balances the trade-off between privacy leakage and task performance. It implicitly distinguishes between replaceable Personally Identifiable Information (PII) (which it shields locally) and task-critical PII (which it strategically sends to the remote model for maximal utility). To validate our approach in complex scenarios, we also introduce a new medical dataset with high PII density. Our framework achieves a new state-of-the-art on the privacy-utility frontier, demonstrating the necessity of learned, adaptive policies for deploying LLMs in sensitive environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.