Papers
Topics
Authors
Recent
2000 character limit reached

RoBCtrl: Attacking GNN-Based Social Bot Detectors via Reinforced Manipulation of Bots Control Interaction (2510.16035v1)

Published 16 Oct 2025 in cs.LG, cs.AI, and cs.CR

Abstract: Social networks have become a crucial source of real-time information for individuals. The influence of social bots within these platforms has garnered considerable attention from researchers, leading to the development of numerous detection technologies. However, the vulnerability and robustness of these detection methods is still underexplored. Existing Graph Neural Network (GNN)-based methods cannot be directly applied due to the issues of limited control over social agents, the black-box nature of bot detectors, and the heterogeneity of bots. To address these challenges, this paper proposes the first adversarial multi-agent Reinforcement learning framework for social Bot control attacks (RoBCtrl) targeting GNN-based social bot detectors. Specifically, we use a diffusion model to generate high-fidelity bot accounts by reconstructing existing account data with minor modifications, thereby evading detection on social platforms. To the best of our knowledge, this is the first application of diffusion models to mimic the behavior of evolving social bots effectively. We then employ a Multi-Agent Reinforcement Learning (MARL) method to simulate bots adversarial behavior. We categorize social accounts based on their influence and budget. Different agents are then employed to control bot accounts across various categories, optimizing the attachment strategy through reinforcement learning. Additionally, a hierarchical state abstraction based on structural entropy is designed to accelerate the reinforcement learning. Extensive experiments on social bot detection datasets demonstrate that our framework can effectively undermine the performance of GNN-based detectors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.