Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Globalizing the Carleman linear embedding method for nonlinear dynamics (2510.15715v1)

Published 17 Oct 2025 in quant-ph, nlin.CD, and physics.comp-ph

Abstract: The Carleman embedding method is a widely used technique for linearizing a system of nonlinear differential equations, but fails to converge in regions where there are multiple fixed points. We propose and test three different versions of a global piecewise Carleman embedding technique, based on partitioning space into multiple regions where the center and size of the embedding region are chosen to control convergence. The first method switches between local linearization regions of fixed size once the trajectory reaches the boundary of the current linearization chart. During the transition, the embedding is reconstructed within the newly created chart, centered at the transition point. The second method also adapts the chart size dynamically, enhancing accuracy in regions where multiple fixed points are located. The third method partitions the state space using a static grid with precomputed linearization charts of fixed size, making it more suitable for applications that require high speed. All techniques are numerically tested on multiple integrable and chaotic nonlinear dynamical systems demonstrating their applicability for problems that are completely intractable for the standard Carleman embedding method. Simulations of chaotic dynamical systems such as various types of strange attractors demonstrate the power of the adaptive methods, if a sufficiently low tolerance is imposed. Still, the non-adaptive version of the method, with fixed centers and sizes of the linearization charts, can be faster in simulating dynamical systems while providing similar accuracy and may be more appropriate as the basis of algorithms for future quantum computers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube