Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Kernel-Based Evaluation of Conditional Biological Sequence Models (2510.15601v1)

Published 17 Oct 2025 in stat.ML and cs.LG

Abstract: We propose a set of kernel-based tools to evaluate the designs and tune the hyperparameters of conditional sequence models, with a focus on problems in computational biology. The backbone of our tools is a new measure of discrepancy between the true conditional distribution and the model's estimate, called the Augmented Conditional Maximum Mean Discrepancy (ACMMD). Provided that the model can be sampled from, the ACMMD can be estimated unbiasedly from data to quantify absolute model fit, integrated within hypothesis tests, and used to evaluate model reliability. We demonstrate the utility of our approach by analyzing a popular protein design model, ProteinMPNN. We are able to reject the hypothesis that ProteinMPNN fits its data for various protein families, and tune the model's temperature hyperparameter to achieve a better fit.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: