TokenTiming: A Dynamic Alignment Method for Universal Speculative Decoding Model Pairs (2510.15545v1)
Abstract: Accelerating the inference of LLMs has been a critical challenge in generative AI. Speculative decoding (SD) substantially improves LLM inference efficiency. However, its utility is limited by a fundamental constraint: the draft and target models must share the same vocabulary, thus limiting the herd of available draft models and often necessitating the training of a new model from scratch. Inspired by Dynamic Time Warping (DTW), a classic algorithm for aligning time series, we propose the algorithm TokenTiming for universal speculative decoding. It operates by re-encoding the draft token sequence to get a new target token sequence, and then uses DTW to build a mapping to transfer the probability distributions for speculative sampling. Benefiting from this, our method accommodates mismatched vocabularies and works with any off-the-shelf models without retraining and modification. We conduct comprehensive experiments on various tasks, demonstrating 1.57x speedup. This work enables a universal approach for draft model selection, making SD a more versatile and practical tool for LLM acceleration.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.