Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Automated Chicken Deboning via Learning-based Dynamically-Adaptive 6-DoF Multi-Material Cutting (2510.15376v1)

Published 17 Oct 2025 in cs.RO

Abstract: Automating chicken shoulder deboning requires precise 6-DoF cutting through a partially occluded, deformable, multi-material joint, since contact with the bones presents serious health and safety risks. Our work makes both systems-level and algorithmic contributions to train and deploy a reactive force-feedback cutting policy that dynamically adapts a nominal trajectory and enables full 6-DoF knife control to traverse the narrow joint gap while avoiding contact with the bones. First, we introduce an open-source custom-built simulator for multi-material cutting that models coupling, fracture, and cutting forces, and supports reinforcement learning, enabling efficient training and rapid prototyping. Second, we design a reusable physical testbed to emulate the chicken shoulder: two rigid "bone" spheres with controllable pose embedded in a softer block, enabling rigorous and repeatable evaluation while preserving essential multi-material characteristics of the target problem. Third, we train and deploy a residual RL policy, with discretized force observations and domain randomization, enabling robust zero-shot sim-to-real transfer and the first demonstration of a learned policy that debones a real chicken shoulder. Our experiments in our simulator, on our physical testbed, and on real chicken shoulders show that our learned policy reliably navigates the joint gap and reduces undesired bone/cartilage contact, resulting in up to a 4x improvement over existing open-loop cutting baselines in terms of success rate and bone avoidance. Our results also illustrate the necessity of force feedback for safe and effective multi-material cutting. The project website is at https://sites.google.com/view/chickendeboning-2026.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.