Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Layerwise Scaling Rules by Proper Weight Decay Tuning (2510.15262v1)

Published 17 Oct 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Empirical scaling laws prescribe how to allocate parameters, data, and compute, while maximal-update parameterization ($\mu$P) enables learning-rate transfer across widths by equalizing early-time update magnitudes. However, in modern scale-invariant architectures, training quickly enters an optimizer-governed steady state where normalization layers create backward scale sensitivity and the effective learning rate becomes width dependent, degrading $\mu$P transfer. We address this by introducing a weight-decay scaling rule for AdamW that preserves sublayer gain across widths. Empirically, the singular-value spectrum of each matrix parameter scales in norm as $\sqrt{\eta/\lambda}$ with an approximately invariant shape; under width scaling $d$, we observe that the top singular value scales approximately as $\sqrt{\eta/\lambda}\cdot d{0.75}$. Combining this observation with the $\mu$P learning-rate rule $\eta_2\propto d{-1}$ for matrix-like parameters implies an empirical weight-decay scaling rule $\lambda_2\propto \sqrt{d}$ that approximately keeps sublayer gains width invariant. Together with vector-like parameters trained at $\eta_1=\Theta_d(1)$ and $\lambda_1=0$, this yields \emph{zero-shot} transfer of both learning rate and weight decay from proxy to target widths, removing per-width sweeps. We validate the rule on LLaMA-style Transformers and in a minimal synthetic setting, and we provide a simple diagnostic, matching top singular values, to check sublayer-gain invariance. Our results extend $\mu$P beyond the near-init regime by explicitly controlling steady-state scales set by the optimizer, offering a practical recipe for width-robust hyperparameter transfer under AdamW.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: