Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

WELD: A Large-Scale Longitudinal Dataset of Emotional Dynamics for Ubiquitous Affective Computing (2510.15221v1)

Published 17 Oct 2025 in cs.AI, cs.CY, and cs.LG

Abstract: Automated emotion recognition in real-world workplace settings remains a challenging problem in affective computing due to the scarcity of large-scale, longitudinal datasets collected in naturalistic environments. We present a novel dataset comprising 733,651 facial expression records from 38 employees collected over 30.5 months (November 2021 to May 2024) in an authentic office environment. Each record contains seven emotion probabilities (neutral, happy, sad, surprised, fear, disgusted, angry) derived from deep learning-based facial expression recognition, along with comprehensive metadata including job roles, employment outcomes, and personality traits. The dataset uniquely spans the COVID-19 pandemic period, capturing emotional responses to major societal events including the Shanghai lockdown and policy changes. We provide 32 extended emotional metrics computed using established affective science methods, including valence, arousal, volatility, predictability, inertia, and emotional contagion strength. Technical validation demonstrates high data quality through successful replication of known psychological patterns (weekend effect: +192% valence improvement, p < 0.001; diurnal rhythm validated) and perfect predictive validity for employee turnover (AUC=1.0). Baseline experiments using Random Forest and LSTM models achieve 91.2% accuracy for emotion classification and R2 = 0.84 for valence prediction. This is the largest and longest longitudinal workplace emotion dataset publicly available, enabling research in emotion recognition, affective dynamics modeling, emotional contagion, turnover prediction, and emotion-aware system design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.