Papers
Topics
Authors
Recent
2000 character limit reached

Salient Concept-Aware Generative Data Augmentation (2510.15194v1)

Published 16 Oct 2025 in cs.CV

Abstract: Recent generative data augmentation methods conditioned on both image and text prompts struggle to balance between fidelity and diversity, as it is challenging to preserve essential image details while aligning with varied text prompts. This challenge arises because representations in the synthesis process often become entangled with non-essential input image attributes such as environmental contexts, creating conflicts with text prompts intended to modify these elements. To address this, we propose a personalized image generation framework that uses a salient concept-aware image embedding model to reduce the influence of irrelevant visual details during the synthesis process, thereby maintaining intuitive alignment between image and text inputs. By generating images that better preserve class-discriminative features with additional controlled variations, our framework effectively enhances the diversity of training datasets and thereby improves the robustness of downstream models. Our approach demonstrates superior performance across eight fine-grained vision datasets, outperforming state-of-the-art augmentation methods with averaged classification accuracy improvements by 0.73% and 6.5% under conventional and long-tail settings, respectively.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube