Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A simple mean field model of feature learning (2510.15174v1)

Published 16 Oct 2025 in cs.LG

Abstract: Feature learning (FL), where neural networks adapt their internal representations during training, remains poorly understood. Using methods from statistical physics, we derive a tractable, self-consistent mean-field (MF) theory for the Bayesian posterior of two-layer non-linear networks trained with stochastic gradient Langevin dynamics (SGLD). At infinite width, this theory reduces to kernel ridge regression, but at finite width it predicts a symmetry breaking phase transition where networks abruptly align with target functions. While the basic MF theory provides theoretical insight into the emergence of FL in the finite-width regime, semi-quantitatively predicting the onset of FL with noise or sample size, it substantially underestimates the improvements in generalisation after the transition. We trace this discrepancy to a key mechanism absent from the plain MF description: \textit{self-reinforcing input feature selection}. Incorporating this mechanism into the MF theory allows us to quantitatively match the learning curves of SGLD-trained networks and provides mechanistic insight into FL.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.