Papers
Topics
Authors
Recent
2000 character limit reached

Operator Flow Matching for Timeseries Forecasting (2510.15101v1)

Published 16 Oct 2025 in cs.LG and cs.AI

Abstract: Forecasting high-dimensional, PDE-governed dynamics remains a core challenge for generative modeling. Existing autoregressive and diffusion-based approaches often suffer cumulative errors and discretisation artifacts that limit long, physically consistent forecasts. Flow matching offers a natural alternative, enabling efficient, deterministic sampling. We prove an upper bound on FNO approximation error and propose TempO, a latent flow matching model leveraging sparse conditioning with channel folding to efficiently process 3D spatiotemporal fields using time-conditioned Fourier layers to capture multi-scale modes with high fidelity. TempO outperforms state-of-the-art baselines across three benchmark PDE datasets, and spectral analysis further demonstrates superior recovery of multi-scale dynamics, while efficiency studies highlight its parameter- and memory-light design compared to attention-based or convolutional regressors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.