Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Snippet-Alignment Data Augmentation for Code Translation (2510.15004v1)

Published 16 Oct 2025 in cs.SE and cs.AI

Abstract: Code translation aims to translate the code from its source language to the target language and is used in various software development scenarios. Recent developments in LLMs have showcased their capabilities in code translation, and parallel corpora play a crucial role in training models for code translation. Parallel corpora can be categorized into program-alignment (PA) and snippet-alignment (SA) data. Although PA data has complete context and is suitable for semantic alignment learning, it may not provide adequate fine-grained training signals due to its extended length, while the brevity of SA data enables more fine-grained alignment learning. Due to limited parallel corpora, researchers explore several augmentation methods for code translation. Previous studies mainly focus on augmenting PA data. In this paper, we propose a data augmentation method that leverages LLMs to generate SA data automatically. To fully leverage both PA data and SA data, we explore a simple yet effective two-stage training strategy, which consistently enhances model performance compared to fine-tuning solely on PA data. Experiments on TransCoder-test demonstrate that our augmented SA data combined with the two-stage training approach yields consistent improvements over the baseline, achieving a maximum gain of 3.78% on pass@k.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.