Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Instruction Following at Scale (2510.14842v1)

Published 16 Oct 2025 in cs.AI

Abstract: A typical approach developers follow to influence an LLM's behavior in an application is through careful manipulation of the prompt, such as by adding or modifying instructions. However, merely adding more instructions provides little assurance that they will actually be followed. We introduce Instruction Boosting as a post-generation method to increase the reliability of LLM prompt instructions. We show that Instruction Boosting improves the instruction following rate by up to 7 points for two instructions and up to 4 points for ten instructions. To demonstrate these results we introduce SCALEDIF, a benchmark with a scaled instruction volume of up to ten instructions per data sample. We also present an analysis of the commonly observed trend that performance degrades as more instructions are added. We show that an important factor contributing to this trend is the degree of tension and conflict that arises as the number of instructions is increased. We contribute a quantitative conflict scoring tool that explains the observed performance trends and provides feedback to developers on the impact that additional prompt instructions have on a model's performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.