Decorrelation Speeds Up Vision Transformers (2510.14657v1)
Abstract: Masked Autoencoder (MAE) pre-training of vision transformers (ViTs) yields strong performance in low-label regimes but comes with substantial computational costs, making it impractical in time- and resource-constrained industrial settings. We address this by integrating Decorrelated Backpropagation (DBP) into MAE pre-training, an optimization method that iteratively reduces input correlations at each layer to accelerate convergence. Applied selectively to the encoder, DBP achieves faster pre-training without loss of stability. On ImageNet-1K pre-training with ADE20K fine-tuning, DBP-MAE reduces wall-clock time to baseline performance by 21.1%, lowers carbon emissions by 21.4% and improves segmentation mIoU by 1.1 points. We observe similar gains when pre-training and fine-tuning on proprietary industrial data, confirming the method's applicability in real-world scenarios. These results demonstrate that DBP can reduce training time and energy use while improving downstream performance for large-scale ViT pre-training.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.