Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Bidding Games: Reinforcement Learning for MEV Extraction on Polygon Blockchain (2510.14642v1)

Published 16 Oct 2025 in cs.GT, cs.AI, and cs.DC

Abstract: In blockchain networks, the strategic ordering of transactions within blocks has emerged as a significant source of profit extraction, known as Maximal Extractable Value (MEV). The transition from spam-based Priority Gas Auctions to structured auction mechanisms like Polygon Atlas has transformed MEV extraction from public bidding wars into sealed-bid competitions under extreme time constraints. While this shift reduces network congestion, it introduces complex strategic challenges where searchers must make optimal bidding decisions within a sub-second window without knowledge of competitor behavior or presence. Traditional game-theoretic approaches struggle in this high-frequency, partially observable environment due to their reliance on complete information and static equilibrium assumptions. We present a reinforcement learning framework for MEV extraction on Polygon Atlas and make three contributions: (1) A novel simulation environment that accurately models the stochastic arrival of arbitrage opportunities and probabilistic competition in Atlas auctions; (2) A PPO-based bidding agent optimized for real-time constraints, capable of adaptive strategy formulation in continuous action spaces while maintaining production-ready inference speeds; (3) Empirical validation demonstrating our history-conditioned agent captures 49\% of available profits when deployed alongside existing searchers and 81\% when replacing the market leader, significantly outperforming static bidding strategies. Our work establishes that reinforcement learning provides a critical advantage in high-frequency MEV environments where traditional optimization methods fail, offering immediate value for industrial participants and protocol designers alike.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube