AudioEval: Automatic Dual-Perspective and Multi-Dimensional Evaluation of Text-to-Audio-Generation (2510.14570v1)
Abstract: Text-to-audio (TTA) is rapidly advancing, with broad potential in virtual reality, accessibility, and creative media. However, evaluating TTA quality remains difficult: human ratings are costly and limited, while existing objective metrics capture only partial aspects of perceptual quality. To address this gap, we introduce AudioEval, the first large-scale TTA evaluation dataset, containing 4,200 audio samples from 24 systems with 126,000 ratings across five perceptual dimensions, annotated by both experts and non-experts. Based on this resource, we propose Qwen-DisQA, a multimodal scoring model that jointly processes text prompts and generated audio to predict human-like quality ratings. Experiments show its effectiveness in providing reliable and scalable evaluation. The dataset will be made publicly available to accelerate future research.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.