LLM Agents Beyond Utility: An Open-Ended Perspective (2510.14548v1)
Abstract: Recent LLM agents have made great use of chain of thought reasoning and function calling. As their capabilities grow, an important question arises: can this software represent not only a smart problem-solving tool, but an entity in its own right, that can plan, design immediate tasks, and reason toward broader, more ambiguous goals? To study this question, we adopt an open-ended experimental setting where we augment a pretrained LLM agent with the ability to generate its own tasks, accumulate knowledge, and interact extensively with its environment. We study the resulting open-ended agent qualitatively. It can reliably follow complex multi-step instructions, store and reuse information across runs, and propose and solve its own tasks, though it remains sensitive to prompt design, prone to repetitive task generation, and unable to form self-representations. These findings illustrate both the promise and current limits of adapting pretrained LLMs toward open-endedness, and point to future directions for training agents to manage memory, explore productively, and pursue abstract long-term goals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.