Papers
Topics
Authors
Recent
2000 character limit reached

BinCtx: Multi-Modal Representation Learning for Robust Android App Behavior Detection (2510.14344v1)

Published 16 Oct 2025 in cs.CR and cs.AI

Abstract: Mobile app markets host millions of apps, yet undesired behaviors (e.g., disruptive ads, illegal redirection, payment deception) remain hard to catch because they often do not rely on permission-protected APIs and can be easily camouflaged via UI or metadata edits. We present BINCTX, a learning approach that builds multi-modal representations of an app from (i) a global bytecode-as-image view that captures code-level semantics and family-style patterns, (ii) a contextual view (manifested actions, components, declared permissions, URL/IP constants) indicating how behaviors are triggered, and (iii) a third-party-library usage view summarizing invocation frequencies along inter-component call paths. The three views are embedded and fused to train a contextual-aware classifier. On real-world malware and benign apps, BINCTX attains a macro F1 of 94.73%, outperforming strong baselines by at least 14.92%. It remains robust under commercial obfuscation (F1 84% post-obfuscation) and is more resistant to adversarial samples than state-of-the-art bytecode-only systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.