High-order mass- and energy-conserving methods for the nonlinear Schrödinger equation and its hyperbolization (2510.14335v1)
Abstract: We propose a class of numerical methods for the nonlinear Schr\"odinger (NLS) equation that conserves mass and energy, is of arbitrarily high-order accuracy in space and time, and requires only the solution of a scalar algebraic equation per time step. We show that some existing spatial discretizations, including the popular Fourier spectral method, are in fact energy-conserving if one considers the appropriate form of the energy density. We develop a new relaxation-type approach for conserving multiple nonlinear functionals that is more efficient and robust for the NLS equation compared to the existing multiple-relaxation approach. The accuracy and efficiency of the new schemes is demonstrated on test problems for both the focusing and defocusing NLS.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.