Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Hybrid, Knowledge-Guided Evolutionary Framework for Personalized Compiler Auto-Tuning (2510.14292v1)

Published 16 Oct 2025 in cs.SE

Abstract: Compiler pass auto-tuning is critical for enhancing software performance, yet finding the optimal pass sequence for a specific program is an NP-hard problem. Traditional, general-purpose optimization flags like -O3 and -Oz adopt a one-size-fits-all approach, often failing to unlock a program's full performance potential. To address this challenge, we propose a novel Hybrid, Knowledge-Guided Evolutionary Framework. This framework intelligently guides online, personalized optimization using knowledge extracted from a large-scale offline analysis phase. During the offline stage, we construct a comprehensive compilation knowledge base composed of four key components: (1) Pass Behavioral Vectors to quantitatively capture the effectiveness of each optimization; (2) Pass Groups derived from clustering these vectors based on behavior similarity; (3) a Synergy Pass Graph to model beneficial sequential interactions; and (4) a library of Prototype Pass Sequences evolved for distinct program types. In the online stage, a bespoke genetic algorithm leverages this rich knowledge base through specially designed, knowledge-infused genetic operators. These operators transform the search by performing semantically-aware recombination and targeted, restorative mutations. On a suite of seven public datasets, our framework achieves an average of 11.0% additional LLVM IR instruction reduction over the highly-optimized opt -Oz baseline, demonstrating its state-of-the-art capability in discovering personalized, high-performance optimization sequences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.