Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Time-Series Anomaly Detection by Integrating Spectral-Residual Bottom-Up Attention with Reservoir Computing (2510.14287v1)

Published 16 Oct 2025 in cs.LG

Abstract: Reservoir computing (RC) establishes the basis for the processing of time-series data by exploiting the high-dimensional spatiotemporal response of a recurrent neural network to an input signal. In particular, RC trains only the output layer weights. This simplicity has drawn attention especially in Edge AI applications. Edge AI enables time-series anomaly detection in real time, which is important because detection delays can lead to serious incidents. However, achieving adequate anomaly-detection performance with RC alone may require an unacceptably large reservoir on resource-constrained edge devices. Without enlarging the reservoir, attention mechanisms can improve accuracy, although they may require substantial computation and undermine the learning efficiency of RC. In this study, to improve the anomaly detection performance of RC without sacrificing learning efficiency, we propose a spectral residual RC (SR-RC) that integrates the spectral residual (SR) method - a learning-free, bottom-up attention mechanism - with RC. We demonstrated that SR-RC outperformed conventional RC and logistic-regression models based on values extracted by the SR method across benchmark tasks and real-world time-series datasets. Moreover, because the SR method, similarly to RC, is well suited for hardware implementation, SR-RC suggests a practical direction for deploying RC as Edge AI for time-series anomaly detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.