Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RLSR: Reinforcement Learning with Supervised Reward Outperforms SFT in Instruction Following (2510.14200v1)

Published 16 Oct 2025 in cs.CL

Abstract: After the pretraining stage of LLMs, techniques such as SFT, RLHF, RLVR, and RFT are applied to enhance instruction-following ability, mitigate undesired responses, improve reasoning capability and enable efficient domain adaptation with minimal data. SFT relies on the next-token prediction objective to strengthen instruction following in a base model using a large corpus of human-labeled responses. In contrast, RFT employs a RL-based approach to adapt fine-tuned reasoning models to specific domains with limited supervision. Inspired by RFT, we propose replacing SFT with RLSR to leverage the extensive SFT dataset in an RL framework, thereby improving the base model's instruction-following ability. In RLSR, the base model generates multiple responses for each prompt, and reward scores are computed as the cosine similarity in the semantic embedding space between the generated and human-labeled responses. RLSR can be utilized in multiple ways. It can directly replace SFT, achieving superior performance on instruction-following benchmarks-for example, RLSR (SB) on Qwen-7B (INFINITY) achieved an AlpacaEval win rate of 26.34%, surpassing SFT's 21.01%. Furthermore, combining SFT and RLSR further enhances downstream task performance; Qwen-7B (INFINITY) achieved a win rate of 30.73% when trained with SFT + RLSR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.